A novel method for mining highly imbalanced high-throughput screening data in PubChem
نویسندگان
چکیده
MOTIVATION The comprehensive information of small molecules and their biological activities in PubChem brings great opportunities for academic researchers. However, mining high-throughput screening (HTS) assay data remains a great challenge given the very large data volume and the highly imbalanced nature with only small number of active compounds compared to inactive compounds. Therefore, there is currently a need for better strategies to work with HTS assay data. Moreover, as luciferase-based HTS technology is frequently exploited in the assays deposited in PubChem, constructing a computational model to distinguish and filter out potential interference compounds for these assays is another motivation. RESULTS We used the granular support vector machines (SVMs) repetitive under sampling method (GSVM-RU) to construct an SVM from luciferase inhibition bioassay data that the imbalance ratio of active/inactive is high (1/377). The best model recognized the active and inactive compounds at the accuracies of 86.60% and 88.89 with a total accuracy of 87.74%, by cross-validation test and blind test. These results demonstrate the robustness of the model in handling the intrinsic imbalance problem in HTS data and it can be used as a virtual screening tool to identify potential interference compounds in luciferase-based HTS experiments. Additionally, this method has also proved computationally efficient by greatly reducing the computational cost and can be easily adopted in the analysis of HTS data for other biological systems. AVAILABILITY Data are publicly available in PubChem with AIDs of 773, 1006 and 1379. CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
QSAR Modeling of Imbalanced High-Throughput Screening Data in PubChem
Many of the structures in PubChem are annotated with activities determined in high-throughput screening (HTS) assays. Because of the nature of these assays, the activity data are typically strongly imbalanced, with a small number of active compounds contrasting with a very large number of inactive compounds. We have used several such imbalanced PubChem HTS assays to test and develop strategies ...
متن کاملChallenges in Secondary Analysis of High Throughput Screening Data
Repurposing an existing drug for an alternative use is not only a cost effective method of development, but also a faster process due to the drug's previous clinical testing and established pharmokinetic profiles. A potentially rich resource for computational drug repositioning approaches is publically available high throughput screening data, available in databases such as PubChem Bioassay and...
متن کاملDRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning
BACKGROUND Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods for extracting useful information from these assays. Virtual screening and a wide variety of databases, methods and solutions proposed to-date, did not com...
متن کاملMining basic active structures from a large-scale database
BACKGROUND The Pubchem Database is a large-scale resource for chemical information, containing millions of chemical compound activities derived by high-throughput screening (HTS). The ability to extract characteristic substructures from such enormous amounts of data is steadily growing in importance. Compounds with shared basic active structures (BASs) exhibiting G-protein coupled receptor (GPC...
متن کاملVirtual screening of bioassay data
BACKGROUND There are three main problems associated with the virtual screening of bioassay data. The first is access to freely-available curated data, the second is the number of false positives that occur in the physical primary screening process, and finally the data is highly-imbalanced with a low ratio of Active compounds to Inactive compounds. This paper first discusses these three problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 25 شماره
صفحات -
تاریخ انتشار 2009